
Journal of Sound and <ibration (2002) 252(3), 443}456
doi:10.1006/jsvi.2001.3849, available online at http://www.idealibrary.com on

0

LINEAR VIBRATION CHARACTERISTICS OF
CABLE}BUOY SYSTEMS

W.-J. KIM AND N. C. PERKINS

Department of Mechanical Engineering, ;niversity of Michigan, 2250 G.G. Brown, Ann Arbor,
MI 48109, ;.S.A. E-mail: ncp@umich.edu

(Received 4 October 2000, and in ,nal form 7 June 2001)

A theoretical model for the linear vibration of a cable tensioned by a subsurface buoy is
developed. The equilibrium of the cable}buoy system subject to drag is evaluated using an
approximate closed-form solution whose range of validity is con"rmed through comparison
with numerical solutions. The three-dimensional equations of cable}buoy motion are
linearized about this equilibrium and then used to assess vibration characteristics. The
characteristic equations for the natural frequencies of both in-plane and out-of-plane
vibration modes are derived. The in-plane natural frequency spectrum exhibits the curve
veering phenomena due to asymmetry of the associated mode shapes. Parameter studies
reveal the dependencies of the in-plane and out-of-plane vibration modes on the cable
tension, the buoy mass, and the current velocity.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Cables are lightweight structural elements capable of transmitting forces and electrical and
optical signals over great distances. Cables "nd pervasive use in ocean engineering
applications where they serve as towing lines, mooring lines, signal transmission lines,
umbilicals, tethers, etc. Growing interest in deep water resources requires the use of cable
systems in, for example, mooring lines for #oating production storage and o%oading
facilities, tension leg platforms, and remotely operated vehicles. The design of such systems
bene"ts from accurate and e$cient predictions of dynamic cable response due to
environmental loading. This study focuses on the dynamic characteristics of an underwater
cable attached to a subsurface buoy.
The ocean environment continuously disturbs a cable}buoy system through wave and

current actions. For instance, a change in the mean current will alter the equilibrium
position of the buoy and the equilibrium shape and tension of the cable. These changes
in the equilibrium subsequently alter the vibration characteristics of the cable}buoy
system.
The natural frequencies and mode shapes for shallow sagged cables with "xed and level

supports have been studied extensively; see, for example, Irvine and Caughey [1] and
reviews in references [2, 3]. The dynamic characteristics of shallow sag cables with "xed but
inclined supports was considered in reference [2] by assuming a symmetrical equilibrium
con"guration (about the mid-span of the cable). This study concluded that the cable natural
frequency spectrum possesses frequency cross overs as in the case of level supports.
Triantafyllou and Grinfogel [4] accounted for the asymmetry of the equilibrium
con"guration for an inclined cable and concluded that the natural frequency spectrum
022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.



Figure 1. Schematic of cable with length ¸ tensioned by a spherical buoy and subject to a uniform current.
Three-dimensional dynamic response (** curve) from equilibrium (} } } } curve) is described by U which is
resolved into components along the Serret}Frenet triad �tL , nL , bK � de"ned by the equilibrium con"guration.
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exhibits &&avoided crossing'' (also known as curve veering [5]) and asymmetric vibration
mode shapes.
The cables used in mooring or towing applications are frequently assumed to be massless

spring elements [6] or inertia-free inextensible segments [7]. In these instances, attention is
focused on the moored or towed body assuming that the cable only provides a non-linear or
linear restoring force. The introduction of cable inertia leads to partial di!erential equations
for the cable coupled to the ordinary di!erential equations for the body; see, for example,
references [8, 9].
The objective of this paper is to determine the linear vibration characteristics of

cable}buoy systems composed on an inclined elastic cable "xed at its lower end and
terminating at a submerged buoy at its upper end; refer to Figure 1. Parameter studies are
performed to identify the major in#uences of the cable}buoy parameters on the natural
frequency spectrum and the associated vibration mode shapes.

2. EQUATIONS OF MOTION

Figure 1 illustrates the cable}buoy system of interest. The #exible cable is "xed to the sea
bed at its lower end and attached to a buoy at its upper end. The equations governing
three-dimensional cable}buoy response are developed below.
The cable is considered to be a homogeneous, linearly elastic, one-dimensional

continuum with negligible torsional, bending and shear rigidities, and subject to gravity,
tension and #uid forces. The cable model follows that of cable-mass systems developed in
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reference [10] with #uid forces considered in reference [11]. The #uid forces on the buoy
and cable are approximated by using Morison's equation and do not include possible
#uctuating lift and drag components due to vortex shedding. The equations of
three-dimensional motion about an equilibrium con"guration are derived as follows.
Figure 1 illustrates the cable in its equilibrium con"guration (dashed curve) subject

to a uniform current and in its dynamic (solid curve) con"guration following a
disturbance. The position vectors R�(S) and R�(S, t) describe the location of a material point
on the cable centerline in the equilibrium and dynamic con"gurations respectively.
The three-dimensional dynamic response of the cable about equilibrium U(S, t)"
R�(S, t)!R�(S) is projected onto the equilibrium Serret}Frenet triad composed of the unit
tangent (t; ), normal (n( ), and binormal (b) ) directions. Hence, U (S, t)";

�
(S, t)t;#

;
�
(S, t)n;#;

�
(S, t)b) , where S denotes the equilibrium arc length co-ordinate and t denotes

time. The co-ordinates ;
�
and ;

�
de"ne responses within the equilibrium plane and ;

�
de"nes response orthogonal to this plane.
Following references [10, 11], the kinetic and strain energies of the cable and buoy are

formulated together with the virtual work done by gravitational and #uid forces.
Substituting those expressions into Hamilton's principle leads to the following equations of
motion for the cable}buoy system:
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The quantities �"�(1#;
���

!K�;
�
) and �"P�#EAh(S, t) describe the total

tension of the cable. Here, EA denotes the axial sti!ness of the cable cross-section and h (S, t)
denotes the dynamic strain of the cable centerline [10]. In the above equations, P� and K�

are the equilibrium tension and curvature of the cable, respectively. The cable mass/length
in air is m"�


A, and that in water is m�"(�


#C

�
�
�
)A, where the #uid added mass (with

added mass coe$cient for the cable C
�
) is included. The e!ective cable weight/length is

m
�
g"(�


!�

�
)Ag which includes the buoyancy of the cable. Here, �


is the cable density,

�
�
is the #uid density, g is the acceleration due to gravity, and A is the (uniform) cable

cross-sectional area. Note that the #uid added mass is small in tangential direction and
therefore ignored in equation (1). The quantity � is the angle of inclination of the
equilibrium tangent from the horizontal as depicted in Figure 1.
Note that Archimedes' principle is not applicable to the in"nitesimal cable element since

the hydrostatic pressure "eld is not closed [12]. To account for this, the force due to
hydrostatic pressure is added to the cross-sectional area of the cable element and then
subtracted from the equilibrium tension. This modi"ed tension, often called the &&e!ective
tension'' [13], becomes

P�"P�#P
�
A, (8)
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where P
�
is the hydrostatic pressure at the location of the cable element. However, for a taut

cable, the e!ective tension can be approximated as P� recognizing that P��P
�
A in shallow

to moderate water depths. This approximation is used herein.
In equations (1)}(3), F

��
, F

�	
, and F

�

represent components of hydrodynamic drag in

the tangential, normal, and binormal directions, respectively, as given by [14]
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where <
�
"< cos � and <

�
"!< sin � are the tangential and normal components of the

uniform current. Here, C
��

and C
�	

are the tangential and normal drag coe$cients for an
inclined cylinder. Experimental observations on #ow past inclined cylinders show that the
streamlines in the neighborhood of the cylinder are bent so that the actual #ow is nearly
orthogonal to the cylinder when �*553 [15]. Therefore, C

�	
can be approximated as the

drag coe$cient C
�
for #ow normal to the cylinder. Also, experiments reveal that C

��
is less

than C
�	

by an order of magnitude (typically 1}3% of C
�	

); hence, F
��

will be ignored
relative to F

�	
and F

�

in the following.

The equations of motion for the buoy are expressed by the boundary conditions (5)}(7).
The buoy mass, including #uid added mass, isM�"M#C

�

�
�
<


, whereM, C

�

, and <



are the buoy mass in air, added mass coe$cient, and volume, respectively. In equations (5)
and (6), B and = denote the buoyancy and weight of the buoy, respectively, and the
superscript ( )� denotes a quantity evaluated at S"¸. The hydrodynamic drag on the buoy
is given by [16]
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sin ��, and C

�

and A



are the drag coe$cient and the

projected area of the (spherical) buoy to the #ow, respectively. Note that the hydrodynamic
drag for the buoy in the #ow direction is decomposed into components along the tangential
and normal directions since the independence principle of the drag coe$cient for an in"nite
cylinder does not hold for "nite three-dimensional bodies such as a spherical buoy.

3. EQUILIBRIUM ANALYSIS

Prior to evaluating the linear vibration characteristics of the cable}buoy system, the
equilibrium tension P�(S) and the inclination angle ��(S) must "rst be determined. Using
;

�
,;

�
,;

�
,0 in equations (1)}(3) yields the following equilibrium equations

governing P� (S) and K�(S):
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where <�
�
"!< sin �� and the superscript ( )� denotes a quantity evaluated in the

equilibrium con"guration. In arriving at equations (15) and (16), F
��

�F
�	

, C
�	

:C
�
, and

K�(S)"��
��
(S) were used. The above equations can be integrated numerically starting at

S"¸ where the equilibrium tension and angle are known for a speci"c buoy. While
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analytical solutions to equations (15) and (16) are not available, approximate closed-form
solutions can be obtained using the following approximations.
Consider a relatively taut inclined cable and expand ��(S) in a "rst order Taylor series

about the point S"l, 0)l)¸ where �"�*:

��
�
:�*#R(S!l). (17)

The slope Rmay be determined by knowing the angle at the upper end ��"tan��((B!=)/
H) and the lower end angle where (approximately) ��:tan��[((B!=)!m
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D¸<�)]. Here,H is the magnitude of the hydrodynamic drag on buoy in the #ow

direction. Using equation (17), the #uid force components can now be evaluated and force
balances on the cable element in the horizontal and vertical directions provide
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Figure 2. Equilibrium con"guration of the example cable}buoy system de"ned in Table 1 at <"0)5 ( } } } } ),
1)0 (**), and 2)0 () ) )) m/s. The net buoyancy of the buoy is "ve times the weight of the cable, i.e., R

�
"5.



TABLE 1

Cable, buoy and -uid parameters for examples in sections 3 and 5

Parameter Value Parameter Value

Cable length (L) 40 m Cable diameter (D) 0)0155 m
Cable density (�


) 4104)52 kg/m� Fluid density (�

�
) 1025 kg/m�

Section modulus (EA) 3)1�10� N Cable added mass coe!. (C
�
) 1)0

Buoy added mass coe!. (C
�

) 0)5 Cable drag coe$cient (C

�
) 1)05

Buoy drag coe$cient (C
�

) 0)4 Fluid velocity (<) 1 m/s

Figure 3. Predicted (a) equilibrium tension and (b) inclination angle at<"0)5 (} }), 1)0 (**), and 2)0 () ) ) )) m/s
as a function of cable arc length when R

�
"5. Results of numerical integration are denoted by ****.
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where C
�
"cos ��

�
!cos ��

�
, C

�
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�
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�
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�
), and ��

�
"�*#R(¸!l). The equilibrium curvature K�(S) can now be found by

substituting equations (18)}(20) into equation (16) and solving for ��
��
.

Figure 2 illustrates the equilibrium shape of a cable}buoy system de"ned by the example
system parameters listed in Table 1. The cable}buoy system is illustrated for three values of
the #uid velocity. The net buoyancy of the buoy (B!=) is 5 times the weight of the cable in
this example leading to a relatively taut cable pro"le for all #uid velocities considered. The
numerical solution of equations (15) and (16) con"rms the accuracy of the approximate
closed-form solution above whenever

R
�
"(B!=)/(m

�
g¸)'2. (21)

For example, when this condition is met, the approximate solution is accurate to within 2%
(0)4%) based upon the inclination angle ��(S) (the equilibrium tension P� (S)) at any position
along the cable for the nominal case<"1 m/s. The corresponding equilibrium tension and
inclination angle of the cable are illustrated in Figure 3 and exhibit good agreement with
numerical results (asterisks). Note that the cable tension is dominated by the buoyancy of
the buoy for the relatively taut cables considered herein. This fact is also re#ected in the
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�One can also relax this assumption and allow "rst order variation in the tension and curvature as in reference
[4].

computed inclination angle which varies almost linearly (i.e., almost constant, small
curvature) along the cable.

4. EIGENSOLUTION ANALYSIS

The natural frequencies and mode shapes of the cable}buoy system play an important
role in any subsequent analysis of dynamic response and particularly vortex-induced
vibrations. These quantities may be determined upon linearizing the equations of motion
about the equilibrium con"guration. To this end, the equilibrium equations (15) and (16)
are substituted into equations (1)}(7) and excitation, drag and non-linear terms are ignored.
Furthermore, it is assumed that the equilibrium sag is small and that the cable stretches
quasi-statically (ignore term ;

����
in equation (1)) since longitudinal waves in the cable

propagate extremely fast relative to transverse waves [17]. However, the tangential
acceleration of the buoy in equation (5) is retained to capture the relatively slow time scale
dynamics of the buoy due to the (expected) large buoy inertia.
The equilibrium analysis above reveals that the equilibrium tensionP�(S) and curvatureK�(S)

of a taut cable are nearly constant and shall be approximated as such hereafter�. Applying
Taylor series expansions about S"l"¸ in equation (17) and using P�:P� andK�:K�, the
equations of motion (1)}(7) linearized about the equilibrium con"guration become
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is the dynamic strain of the cable centerline. The tangential displacement at the buoy u�
�

satis"es the equation of motion
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Here, 	�
�
"EA/(¸M�) is the natural frequency of cable}buoy system in the tangential

direction and is the same as that of a massless elastic rod with sti!ness EA/¸ and end mass
M�. The following non-dimensional quantities are employed in equations (22)}(28):
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The associated eigenvalue problems are found by substituting
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into equations (22)}(28), where 	
�
and 	

�
represent the natural frequencies for vibration

modes within the plane of the equilibrium and normal to the plane of the equilibrium,
respectively. The mode shapes for these &&in-plane'' and &&out-of-plane'' modes are given by
X

�
(S) and X

�
(S) respectively.

The characteristic equation for the natural frequencies of the in-plane modes is found as
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where z
�
"M�/(m�¸) denotes the mass ratio of the buoy to the cable and 
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represents a cable parameter for an inclined cable [2]. The eigenvalue �
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equation (30) is found numerically where ��
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The characteristic equation for the natural frequencies of the out-of-plane modes is
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and the corresponding out-of-plane mode shape is
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where the eigenvalue �
�
"¸�

�
/D can be found numerically and ��
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"m�D	�

�
/(m

�
v�
�
).

5. RESULTS

The parameters for the examples used in this study are listed in Table 1. Consider "rst
two simple limiting cases obtained when the buoy mass approaches zero and then in"nity.
As the buoy mass approaches zero, z

�
P0, the characteristic equations and associated

natural frequencies for the in-plane ( j"2) and out-of-plane ( j"3) modes become

cos(�
�
)"0, 	

�
"�

2n!1

2 �
�
¸�

P�

m�
, n"1, 2,2. (34)

Thus, the classical results for a taut string with one end "xed and one end free are recovered
as required in this limit (assuming non-vanishing tension). The computed natural
frequencies for this limiting case are illustrated in Figure 4(a) for the in-plane modes and the
left limits of Figure 5 for the out-of-plane modes. Both in-plane and out-of-plane natural
frequencies are trivial functions of the cable parameter 
/� as z

�
P0. In these and

subsequent "gures, the natural frequencies are represented as non-dimensional quantities
and are normalized by the fundamental natural frequency of a taut string with "xed
supports, 	

�
. The corresponding mode shapes are illustrated in Figures 6}8 where they are



Figure 4. In-plane natural frequency spectra as functions of the cable parameter 
/� for six values of the buoy
mass: (a) z

�
P0, (b) z

�
"0)1, (c) z

�
"1, (d) z

�
"10, (e) z

�
"100, and (f ) z

�
PR. Natural frequencies are

normalized with respect to the fundamental natural frequency of a string with "xed supports (	
�
).
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denoted by the value z
�
"0. In this limit, there is no ("rst order) dynamic stretching of the

cable centerline as there is no resistance at the boundary S"¸.
For the limiting case of in"nite buoy mass, z

�
PR, we recover the case of an inclined

cable with "xed supports. The characteristic equation (30) provides

�
�
!

��
�


�
"2 tan�

�
�
2 � (35)

for symmetric in-plane modes which have frequency cross-overs at 
/�"2n, n"1, 2, 3,2
[2]. The natural frequencies of the antisymmetric in-plane modes and all of the out-of-plane
modes are identical to those of the classical taut string with "xed supports. The in-plane
natural frequencies are illustrated in Figure 4(f ) as a function of the cable parameter 
/�.
The out-of-plane natural frequencies are illustrated in the right limits of Figure 5 and are



Figure 5. Out-of-plane natural frequency spectrum as a function of buoy mass z
�
for buoy diameter d"0)6 m

and cable parameter 
/�"6. Natural frequencies are normalized with respect to the fundamental natural
frequency of a string with "xed supports (	

�
).

Figure 6. Odd-order in-plane mode shapes for selected values of the buoymass for the case 
/�"10. Buoy mass
z
�
"0, 0)1, 1, and R. (a) "rst mode, (b) third mode, and (c) "fth mode. }} } line represents the equilibrium

con"guration of the cable.
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independent of the cable parameter. The corresponding mode shapes are illustrated in
Figures 6}8 where they are denoted by the value z

�
PR. It should be restated that these

results are based on assuming an equilibrium shape that is symmetric about the cable
mid-span (as in reference [2]). If the equilibrium is allowed to be asymmetric (as in reference
[4]), the in-plane natural frequency spectrum, Figure 4(f ), would exhibit curve veering
instead of crossings and hybrid (asymmetric) mode shapes would exist.
Consider now the general case of "nite (and non-vanishing) buoy mass. Figure 4 shows

the in-plane natural frequency spectrum parameterized by the buoy mass. Note that the



Figure 7. Even-order in-plane mode shape for selected values of the cable parameter 
/� and buoy mass z
�
.

Buoy mass z
�
"0, 0)1, 1, 30, 100, and R. (a) and (d) second mode at 
/�"0)8 and 10, (b) and (e) fourth mode at


/�"2 and 10, and (c) and (f ) sixth mode at 
/�"4 and 10. } } } line represents the equilibrium con"guration of
the cable.
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fourth and sixth natural frequencies for vanishing buoy mass (z
�

P0) evolve to the natural
frequencies of the "rst and second symmetric modes, respectively, as the buoy mass
approaches in"nity (z

�
PR) and the third and "fth natural frequencies evolve to the "rst

and second antisymmetric modes as the buoy mass increases from 0 to R. Note also from
Figure 4(e) that the natural frequencies never exhibit cross-overs (repeated frequencies).
Instead curve veering occurs when the buoymass is "nite. Curve veering originates from the
asymmetry of the mode shapes as discussed in reference [4]. Moreover, as the buoy mass
increases, the location of the veering regions migrate from 
/�"0 for vanishing buoy mass
(z

�
P0) to 
/�"2n, n"1, 2,2 for in"nite buoy mass (z

�
PR). Therefore, the vibration

characteristics of cable}buoy systems become more sensitive to parameter changes for cases
of moderate cable tension. Finally, the natural frequencies are strongly sensitive to changes
in the cable parameter whenever the vibration mode shape includes signi"cant dynamic
stretching.
The corresponding mode shapes are illustrated in Figure 6 (odd order modes) and

Figure 7 (even order modes) for selected values of the buoy mass. Note that as the buoy
mass increases, the "rst and second natural frequencies approach zero and the "rst mode
approximates a pendulum-like mode (no nodes) as shown in Figure 6(a). The fourth and
higher order even in-plane mode shapes become sensitive to the cable parameter 
/� as the
buoy mass increases (z

�
PR). For example, the fourth in-plane mode shape evolves from

the "rst symmetric mode for "xed supports at 
/� "2 in Figure 7(b) to the second
symmetric mode at 
/�"10 as illustrated in Figure 7(e). The "rst symmetric in-plane mode
shape for "xed supports continuously evolves to the second symmetric mode and thereby
minimizes the dynamic cable tension.
The out-of-plane natural frequency spectrum is illustrated in Figure 5 as a function of the

buoy mass when 
/�"6. Unlike the in-plane natural frequencies, the out-of-plane natural



Figure 8. Out-of-plane mode shape for selected values of the buoy mass: z
�
"0, 0)1, 1, and R. (a) "rst mode, (b)

second mode, (c) third mode, and (d) fourth mode. } } } line represents the equilibrium con"guration of the cable.
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frequencies are independent of the cable parameter 
/� since they do not induce dynamic
stretching. The fundamental natural frequency for vanishing buoy mass (z

�
P0)

approaches zero with increasing buoy mass and the corresponding mode shape approaches
a pendulum-like mode as expected; see Figure 8(a). The second and third natural
frequencies evolve to the "rst and second out-of-plane natural frequencies of an inclined
cable with "xed supports, respectively. The out-of-plane natural frequency spectrum shows
rapid changes at moderate buoy mass (0)1(z

�
(1) and also shows earlier transitions from

those of "xed}free supports to "xed supports at higher vibration modes.
Figure 9 shows the in-plane natural frequency spectrum as a function of the #ow velocity

for six values of the buoy mass. The #ow velocity controls the hydrodynamic drag which
then controls the equilibrium curvature and tension, hence the natural frequencies. Note
that the accuracy of the approximate equilibrium solution initially degrades with an
increase in the #ow velocity because the linear inclination angle approximation in
equation (17) initially deviates from the exact solution. However, increasing #ow velocity
also creates more drag on the buoy and eventually more tension. These e!ects make the
uniform curvature and tension accurate in the range of moderate #ow velocity (0}4 m/s). In
this range, the "rst in-plane natural frequency approaches zero with increasing buoy mass
and it is not sensitive to the #ow velocity. However, the second natural frequency
signi"cantly depends on the #ow velocity and the buoy mass. With increasing #ow velocity,
the equilibrium curvature of the cable "rst increases and then decreases towards zero. The
second natural frequency achieves its minimum value when the curvature achieves its
maximum (<:3.75 m/s) since the cable becomes structurally softer with greater curvature.
The natural frequencies of the third and higher order, odd in-plane modes are nearly
independent of the #ow velocity for moderate buoy mass (z

�
"0)1, 1, 10). With increasing

buoy mass, however, frequency veerings appear; refer to &&v's'' denoted in Figure 9. The
natural frequencies exhibit considerable dependence on the #ow velocity for the case of
higher buoy mass (z

�
*20) and the sensitivity is greatest within the range of #ow velocities

expected in the ocean environment (0}2 m/s).

6. SUMMARY AND CONCLUSION

A model for the linear vibration characteristics of cable}buoy systems subject to
a uniform current has been developed. The equilibrium of the cable}buoy system is
evaluated "rst and the associated equilibrium tension and curvature are determined from



Figure 9. In-plane natural frequencies as functions of the #ow velocity for buoy diameter d"0)6 m and R
�
"5.

(a) z
�
"0)1, (b) z

�
"1, (c) z

�
"10, (d) z

�
"20, (e) z

�
"50, and (f ) z

�
"100. Natural frequencies are normalized

with respect to the fundamental natural frequency of a string with "xed supports (	
�
). In the "gure, &V' denotes

a region of curve veering.
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an approximate closed-form solution. The accuracy of this approximation is con"rmed by
comparison with results found by numerical integration.
The natural frequencies and mode shapes for the in-plane and out-of-plane modes of the

cable}buoy system are studied. When the buoy mass approaches zero, the results converge
to the classical cases of a taut string with "xed}free boundary conditions as required. At the
other extreme, when the buoy mass approaches in"nity, the results converge to those of
a taut inclined cable with "xed supports. For "nite and non-zero buoy mass, the natural
frequencies and mode shapes are evaluated as functions of the cable parameter 
/�, buoy
mass z

�
, and #ow velocity <. For the in-plane natural frequencies, frequency curve veering

exists.
As the buoy mass increases, the "rst and second in-plane natural frequencies and the "rst

out-of-plane natural frequency all converge to zero when the current exists. For both types
of modes, the corresponding fundamental mode shape evolves to a pendulum-like mode for
large buoy mass. The natural frequency spectrum for the in-plane modes exhibits a strong
dependence on the cable parameter and #ow velocity for cases of large buoy mass.



456 W.-J. KIM AND N. C. PERKINS
ACKNOWLEDGMENT

The authors wish to acknowledge the U.S. O$ce of Naval Research for support of this
research.

REFERENCES

1. H. M. IRVINE and T. K. CAUGHEY 1974 Proceedings of the Royal Society of ¸ondon A 341,
299}315. The linear theory of free vibrations of a suspended cable.

2. H. M. IRVINE 1981 Cable Structures. Cambridge, MA: MIT Press.
3. M. S. TRIANTAFYLLOU 1984 Shock and <ibration Digest 16, 9}17. Linear dynamics of cables and

chains.
4. M. S. TRIANTAFYLLOU and L. GRINFOGEL 1986 American Society of Civil Engineers Journal of
Structural Engineering 112, 139}148. Natural frequencies and modes of inclined cables.

5. N. C. PERKINS and C. D. MOTE 1986 Journal of Sound and<ibration 106, 451}463. Comments on
curve veering in eigenvalue problems.

6. O. GOTTLIEB 1997 American Society of Mechanical Engineers Journal of O+shore Mechanics and
Arctic Engineering 119, 234}238. Bifurcations of a nonlinear small-body ocean-mooring system
excited by "nite-amplitude waves.

7. J. V. SANDERS 1982 Ocean Engineering 9, 483}499. A three-dimensional dynamic analysis of
a towed system.

8. A. A. TJAVARAS, Q. ZHU, Y. LIU, M. S. TRIANTAFYLLOU and D. K. P. YUE 1998 Journal of Sound
and <ibration 213, 709}737. The mechanics of highly-extensible cables.

9. J. M. ABEL 1972 Journal of Hydronautics 6, 83}89. Cable interactions in a depth controlled
submersible.

10. H. P. LIN and N. C. PERKINS 1995 Journal of Sound and<ibration 179, 131}149. Free vibration of
complex cable/mass systems: theory and experiment.

11. W.-J. KIM and N. C. PERKINS 2000 Proceedings of E¹CE/OMAE 2000 Joint Conference, New
Orleans, February 14}17, OMAE2000-8010. Nonlinear two dimensional vortex induced
vibration of an elastic cable.

12. C. P. SPARKS 1984 American Society of Mechanical Engineers Journal of Energy Resources
¹echnology 106, 46}54. The in#uence of tension, pressure and weight on pipe and riser
deformations and stresses.

13. M. S. TRIANTAFYLLOUand A. BLIEK 1983Proceedings 15Annual O+shore¹echnology Conference,
1, 469}476. The dynamics of inclined taut and slack marine cables.

14. H. O. BERTEAUX 1976 Buoy Engineering, New York: John Wiley & Sons.
15. B. M. SUMER and J. FREDSOE 1999 Hydrodynamics Around Cylindrical Structures. New Jersey:

World Scienti"c Publishing Co.
16. S. K. CHAKRABARTI 1987 Hydrodynamics of O+shore Structures. Boston: Computational

Mechanics Publications.
17. M. BEHBAHANI-NEJAD and N. C. PERKINS 1996 Journal of Sound and <ibration 196, 189}202.

Freely propagating waves in elastic cables.


	1. INTRODUCTION
	Figure 1

	2. EQUATIONS OF MOTION
	3. EQUILIBRIUM ANALYSIS
	Figure 2
	TABLE 1
	Figure 3

	4. EIGENSOLUTION ANALYSIS
	5. RESULTS
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8

	6. SUMMARY AND CONCLUSION
	Figure 9

	ACKNOWLEDGMENT
	REFERENCES

